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ABSTRACT

Introduction and Aim: Long-term changes in wildlife habitats are fundamental for understanding biodiversity change and
the ecological contexts that may shape opportunities for host contact or exposure. Avian influenza virus (AIV), one of the most
pressing zoonotic threats, is maintained primarily in wild birds whose habitats are undergoing rapid transformation. Yet no glob-
ally consistent, temporally explicit habitat dataset tailored to AIV host species exists, leaving their long-term habitat dynamics
poorly documented. To address this gap, we developed the first global annual habitat maps of AIV host birds from 2000 to 2022.
Main Variables Included: We developed a habitat classification framework specific to AIV host birds and produced the global
annual terrestrial habitat maps by integrating satellite-derived land cover, climate zones, biome information and topography. The
dataset includes 8 Level-1 and 34 Level-2 habitat types, achieving overall accuracies of 0.84 (+ 0.08) and 0.83 (£ 0.12), respectively.
Time Coverage: The maps span the years 2000-2022, with annual temporal resolution.

Spatial Coverage: The dataset covers global terrestrial surfaces (excluding Antarctica) at a resolution of 300 m.

Taxa: Wild bird species with confirmed AIV detections, with habitat preferences derived from IUCN species-level associations.
Applications: This dataset provides a foundational environmental layer for improving host species distribution models and for
examining how environmental change influences habitats used by AIV host birds. It can support downstream ecological and
epidemiological analyses within a One Health framework and inform conservation planning and land-use management.

1 | Introduction wildlife and humans. For zoonotic host species, such shifts

can alter geographic distributions and movement patterns,
Species' habitats have changed rapidly under global change in- thereby shaping opportunities for cross-species pathogen
cluding land-use conversion, climate variability and intensify- transmission (Carlson et al. 2022; Gibb et al. 2020). Avian
ing human activity (Tilman et al. 2017; Williams et al. 2022; influenza virus (AIV) stands out as the most likely zoonotic
Zheng et al. 2021). These transformations disrupt biodiver- disease to cause the next global pandemic (Uyeki et al. 2017).
sity patterns and reshape interactions among environments, Maintained primarily in wild bird reservoirs (The Global
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Consortium for H5N8 and Related Influenza Viruses 2016),
ATV has repeatedly crossed species barriers and infected wild
birds, poultry, mammals and humans (Agiiero et al. 2023;
Harvey et al. 2023; Leguia et al. 2023; Ramey et al. 2022; Xie
et al. 2023). Because habitat change influences host abun-
dance, occurrence and migratory behaviours, understanding
the spatiotemporal dynamics of their habitats could provide an
essential ecological basis for interpreting subsequent shifts in
species distributions and potential exposure contexts within a
One Health framework.

Habitat is broadly defined as the physical space that a species
occupies or could potentially occupy within a specific spatial
and temporal range, typically delineated by land cover and
climate conditions (Kearney 2006). The International Union
for Conservation of Nature (IUCN) Red List of Threatened
Species classifies all habitat types associated with differ-
ent species into a global habitat classification framework
(IUCN 2012). Waterbirds, the primary natural host of AIV,
predominantly inhabit aquatic environments such as wet-
lands, lakes and coastal regions (Gaidet et al. 2011; Xie
et al. 2023; Yin et al. 2023). In addition to waterbirds, several
terrestrial bird species have also been shown to be suscepti-
ble to AIV infection (Boon et al. 2007), suggesting that eco-
logically relevant host environments extend beyond aquatic
habitats. Despite growing attention to species-environment
interactions within conservation and disease ecology
(Ellis 2021; Glidden et al. 2021; Millard et al. 2021; Outhwaite
et al. 2022; Plowright et al. 2017), few studies have estab-
lished a habitat classification framework tailored specifically
to zoonotic hosts. Existing classification systems, such as the
TUCN Habitat Classification Scheme, are developed for broad
conservation goals and are not designed to capture ecological
contexts relevant to pathogen transmission (IUCN 2012). Up
to now, a systematic understanding of which habitat types are
most ecologically relevant for AIV host birds remains lacking.

A further gap concerns the limited understanding of the spa-
tiotemporal dynamics of AIV host bird habitats. Existing hab-
itat mapping approaches have largely followed two pathways.
The first, known as the Area of Habitat (AOH) (Lumbierres,
Dahal, Soria, et al. 2022), refines IUCN range maps by re-
moving unsuitable areas based on land cover and elevation.
Although effective for narrowing species distributions, it does
not explicitly delineate habitat nor capture temporal dynam-
ics. The second approach maps habitat types directly based on
land cover classifications (Jung et al. 2020), but these products
are typically static, generalised across species, and not tai-
lored to zoonotic hosts. As a result, they fall short in capturing
temporal habitat transformations and in revealing how chang-
ing landscapes reshape spatial interfaces among wild hosts,
domestic animals and humans. Furthermore, land cover-to-
habitat translations often rely on predefined class definitions
rather than empirical observations of species-specific habi-
tat use, potentially misrepresenting the actual relationship
between land cover and realised habitat. These limitations
underscore the need for a host-focused habitat framework,
as AIV host species occupy a distinct subset of habitat types
compared with the broader avifauna. Existing global habitat
products, therefore, lack the specificity required to capture
the ecological settings most relevant to AIV maintenance.

Crucially, the lack of a globally consistent, temporally explicit
habitat dataset for ATV host birds limits efforts to characterise
long-term patterns in their habitat use and the environmental
contexts relevant to potential host-pathogen interactions.

Here, we present the first annual global habitat maps of AIV
host bird species from 2000 to 2022. We first develop the habitat
classification system tailored to AIV host birds by integrating
species-level habitat preferences from the TUCN Red List with
confirmed host records from the Global Initiative on Sharing
All Influenza Data (GISAID) (Shu and McCauley 2017), cap-
turing the full diversity of ecological settings used by host
species across life stages and seasons. Building on this frame-
work, we then generate global, annually resolved terrestrial
habitat maps for the period 2000-2000. Validation using eBird
occurrence records, alongside cross-comparisons with exist-
ing habitat products, demonstrated strong temporal consis-
tency and ecological fidelity across habitat types. This dataset
fills a critical knowledge gap by providing, for the first time,
globally consistent and temporally explicit habitat information
for ATV host bird species. It offers a foundational environmen-
tal layer to improve host species distribution modelling and
support downstream analyses of how environmental change
affects host distributions and the ecological settings that may
influence opportunities for exposure, contributing to broader
One Health efforts to understand the ecological contexts of
zoonotic emergence.

2 | Methods
2.1 | Overview

This study develops a comprehensive framework for generating
and analysing annual terrestrial habitat maps of AIV host birds
(Figure 1). We first establish a two-level habitat classification
system by combining AIV host species records from the GISAID
(Shu and McCauley 2017) with the habitat preference informa-
tion from the TUCN classification scheme (IUCN 2012). Based on
this framework, we produce annual habitat maps (2000-2022)
by translating satellite-derived land cover datasets into habitat
classes using a decision tree model. Additional environmen-
tal variables—including climate zones, biome types, elevation
and alpine and mountain layers—are incorporated to improve
spatial delineation of habitats. We validate the resulting maps
through accuracy assessment using species occurrence data and
by cross-comparing them with existing habitat products.

2.2 | Datasets
2.2.1 | List of Host Bird Species

This study focuses on bird species currently known to host in-
fluenza A viruses. Host information for these viruses was ob-
tained from the GISAID, one of the largest platforms for sharing
influenza-related data worldwide (Shu and McCauley 2017).
GISAID serves as a key repository of genomic sequences and
metadata on all influenza viruses and has been extensively uti-
lised in One Health research (Forster et al. 2020; Gangavarapu
et al. 2023; McBride et al. 2023; Mercatelli and Giorgi 2020;

20f13

Diversity and Distributions, 2026

85U8017 SUOWILLIOD BATe8.0 3|(ded!|dde ayy Aq pausenob a2 s9oile O ‘8sn Jo sejnl 1o} Afelq18UlUO A8]1M UO (SUORIPUOD-pUR-SLUBI LD A3 |IMAeiq 18Ul JUO//:SANY) SUOHIPUOD Pue SWis | 8U1 88S *[9202/20/TT] uo Akiqiauljuo A|im ‘ uopuo ebe|oD AiseAlun - Bueyz Bueid Aq €STOL IPP/TTTT OT/I0p/W00 A8 | Ake.d1jpul|uo//Sdny woly papeojumod ‘Z ‘9202 ‘29veLyT



1. Define classification system

(C‘| H‘! | D ,—> ﬁ: Avian influenza host birds —» ggg Habitat Classification Scheme

r Habitat classification system of avian influenza host birds

2. Generate annual habitat maps

+  Shelter | Food | Water +

Physiological suitability

* Land cover: CCI-LC

Reproduction

* Land cover: GLC_FCS30D

» Elevation

Translating to Habitat class

» World mountains

* Biomes

Decision tree

» Climate classification

S

* Alpine biomes

Annual terrestrial habitat maps of avian influenza host birds

3. Data validation

Accuracy assessment
4. Spatial-temporal analysis

Sen’s slope trend analysis

Comparison with existing data

Mann-Kendall trend test

\‘/”____//

Spatiotemporal trends of habitats

FIGURE1 | Workflow of the study. GISAID stands for the Global Initiative on Sharing All Influenza Data.

Oude Munnink et al. 2020; Shi et al. 2018). From GISAID, we
retrieved detailed information on the influenza A virus col-
lected from 1973 to 2023, with a specific focus on the ‘hostname’
metadata to identify host species. Following data curation and
validation, we confirmed a total of 300 bird species as AIV host
bird species.

2.2.2 | Habitat Preference of AIV Host Bird Species

Habitat preference data for each species were provided by the
TUCN Red List, which provides information on the ‘Habitat
types’, ‘Season’, ‘Suitability’ and ‘Major importance’. The [IUCN
Habitats Classification Scheme accounts for biogeographic
factors, latitudinal zonation and depth in marine systems,

categorising habitats into 18 Level-1 and 100 Level-2 classes
(TUCN 2012). For migratory birds, IUCN also provides infor-
mation on seasonality of habitat use, distinguishing between
‘Resident’, ‘Breeding’, ‘Non-breeding’, ‘Passage’ and ‘Unknown’
categories. ‘Suitability’ reflects the extent to which a habitat
supports a given species. ‘Suitable’ indicates that the species
frequently inhabits the habitat; ‘Marginal’ suggests occasional
presence or low population density. ‘Unknown’ denotes uncer-
tainty regarding habitat suitability. Additionally, ‘Major impor-
tance’ assesses the relevance of each habitat for the species: if a
habitat is deemed suitable, the ‘Major importance’ field shows
a ‘Yes’ or ‘No’. ‘Yes’ signifies that the habitat is crucial for the
species’ survival, either due to its essential role at a specific life
stage (such as breeding or providing food resources) or because
it serves as the primary habitat where most individuals occur.
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2.2.3 | Satellite-Derived Land Cover Data

The primary land cover data used in this study is the
European Space Agency Climate Change Initiative land cover
(CCI-LC) product. CCI-LC provides a global dataset consist-
ing of 22 classes at a 300-m resolution, updated annually
since 1992, and classified according to the United Nations
Food and Agriculture Organization's (UN FAO) Land Cover
Classification System (LCCS) (Defourny et al. 2017). To re-
fine land cover information, we incorporated GLC_FCS30D,
which provides greater detail on wetland subcategories such
as inland wetlands (swamp, marsh, flooded flat and saline)
and coastal wetlands (mangrove, salt marsh and tidal flat)
(Zhanget al. 2024). GLC_FCS30D is the first global dataset for
monitoring land cover dynamics at a 30-m resolution, cover-
ing 35 land cover subcategories and spanning the period from
1985 to 2022 (Zhang et al. 2024).

2.2.4 | Translation Table From Land Cover to
Habitat Class

The translation table linking IUCN habitat class and land cover
types was obtained from Lumbierres, Dahal, Di Marco, et al.
(2022). This dataset was derived from a data-driven model based
on point locality data for birds. Lumbierres, Dahal, Di Marco,
et al. (2022) extracted the land-cover class for each point locality
and aligned them with the corresponding IUCN habitat class,
employing logistic regression models to quantify habitat-land
cover associations. The model-generated odds ratios were then
used to assess the strength of the association between habi-
tat types and land cover. The classification accuracy between
habitat class and land cover from CCI-LC is 71.1%. To ensure
high confidence in our habitat classification, we only included
habitat-land cover associations where the odd ratio >1.396, as
increasing the threshold reduced the presence of spurious asso-
ciations (Table S1).

2.2.5 | Climate and Biome Zoning Data

To characterise the climatic conditions of the habitats, we
utilised climate zones defined by the Koppen-Geiger climate
classification system (Beck et al. 2018). This dataset, available
at 1-km resolution, represents contemporary climate condi-
tions (1980-2016) and was generated from a combination of
four high-resolution, terrain-corrected climate datasets, of-
fering improved classification accuracy and greater detail
compared to previous versions. Additionally, we incorporated
global alpine biome data and realm delineations to refine hab-
itat classifications and generate masks for distinguishing be-
tween subtropical and tropical regions (Dinerstein et al. 2017;
Testolin et al. 2020).

2.2.6 | Mountain Maps and Elevation Data

To differentiate lowland and mountain habitat classes,
we employed the K1 mountain map (Roger et al. 2018) and
digital elevation model (DEM) from the NASA Shuttle
Radar Topography Mission (SRTM) (Jarvis et al. 2008). The

K1 mountain map, produced by the World Conservation
Monitoring Centre, is the first global and objective description
of mountainous characteristics, classifying mountains into
six categories based on a combination of elevation and rela-
tive topography. It reveals that 26.4% of the Earth's terrestrial
surface is mountainous (Roger et al. 2018). The SRTM DEM
features high spatial resolution and accuracy, with a spatial
resolution of approximately 90 m at the equator and a vertical
error of less than 16 m (Jarvis et al. 2008).

2.3 | Defining the Habitat Classification System
of AIV Host Bird Species

The IUCN Habitats Classification Scheme comprises 18 Level-1
and 100 Level-2 habitat classes. However, not all habitat types
are relevant for AIV host birds. To establish a suitable classifi-
cation system, we integrated habitat preference data from the
IUCN Red List with the AIV host bird list from GISAID, gen-
erating a host-habitat association framework. For each species,
we considered habitat preferences across four seasonal periods:
Resident, Breeding, Non-breeding and Passage. To ensure the
reliability of habitat classification, we excluded habitats cate-
gorised as ‘Marginal’ or ‘Unknown’ in terms of suitability, as
well as those where ‘Major importance’ was marked as ‘No’,
given their higher uncertainty in representing essential hab-
itats. Marginal-use habitats constitute only a small fraction of
all host-habitat associations and always occur alongside suitable
habitats (Table S2). Their exclusion, therefore, has negligible
influence on the resulting habitat classification system. Based
on these host-habitat associations, we derived a refined habitat
classification system specifically for AIV host bird species, en-
suring ecological relevance and applicability for mapping their
distributions.

2.4 | Generating Annual Habitat Maps of AIV Host
Bird Species

We employed a decision tree method (Jung et al. 2020) to in-
tegrate land cover, climate and ecological datasets, enabling a
systematic classification of each habitat type (Figure 2). The
mapping process was conducted in two stages. First, we delin-
eated the spatial extents of all Level-1 habitat categories using
constraints specified in the habitat-land cover translation
table, along with criteria for physiological and reproductive
suitability (Table S1). Next, within the defined boundaries of
each Level-1 habitat, we mapped the distribution of their cor-
responding Level-2 habitat types. To maintain spatial consis-
tency, all input datasets were resampled to a 300-m resolution,
aligned with the CCI-LC dataset. The hierarchical mapping
followed a strict, pre-defined sequence based on previous
studies (Jung et al. 2020). At the Level-1 classification stage,
artificial habitats were prioritised, subsequently masking des-
erts, which in turn masked forests, and so forth. For Level-2
classification, a similar hierarchical approach was applied.
For example, the ‘forest-subtropical/tropical moist montane
(1.9) was mapped first, followed by ‘forest-subtropical/tropi-
cal mangrove vegetation above high tide level (1.7)’. To reduce
misclassification errors in Level-2 habitat types and improve
consistency in habitat delineation, certain Level-2 habitat
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FIGURE 2 | The sequence of decision trees for generating habitat at Level-2 of the AIV host bird species. Different colours represent the Level-1
habitat classes. The arrows indicate the mapping order of each Level-2 habitat class, following the approach of Jung et al. (2020). Artificial habitat

classes (red and pink) are masked out from all other habitat classes.

types were aggregated such as artificial arable land (14.1) and
artificial pastureland (14.2). These adjustments were driven
by the classification granularity of the land cover dataset and
the constraints defined in the habitat-land cover translation
table (Defourny et al. 2017; Lumbierres, Dahal, Di Marco,
et al. 2022).

2.5 | Data Validation

2.5.1 | Independent Accuracy Assessment Based on
eBird Observations

To assess the accuracy of each habitat class at both classifica-
tion levels, we first identified bird species with a single habitat
preference at the Level-1 and Level-2 classifications based on the
IUCN Red List, totaling 2891 and 1518 species, respectively. We
then retrieved bird presence records for these selected species
from eBird, a global citizen science platform that collects bird
observation data contributed by volunteers worldwide (Sullivan
et al. 2009). To minimise potential biases of the eBird data from
survey methodology and effort, we applied strict data quality
filters, following established protocols from previous studies
(Johnston et al. 2021; Kelling et al. 2015). These include com-
plete checklists, stationary or travelling protocols, survey dura-
tions under 5h, travel distances under 3km, and fewer than 10
observers per checklist. These filters help reduce variability, en-
suring consistent species detection rates and improving data re-
liability. Finally, a total of 2445 single-habitat species remained

for validation, contributing 45,499,366 presence records globally
(Figure S1).

Validation was performed at the pixel level. A pixel was con-
sidered correctly classified when at least one presence record
of a single-habitat species occurred within it, and the spe-
cies' sole ITUCN-defined habitat matched the pixel's assigned
habitat type. For each species, we calculated the proportion
of presence points that fell within the corresponding habitat
class at both classification levels as an accuracy metric, re-
spectively. The accuracy was calculated using the following
formula:

Accuracy = MuwithinHabitat .
LONTI
where M ithinHabitat denotes the number of species occurrence

points (from eBird) falling within the corresponding mapped
habitat, and n,, is the total number of species occurrence
points.

2.5.2 | Comparison With Habitat Maps Developed by
Jung et al. (2020)

At the global scale, publicly available species habitat datasets
remain highly limited. The habitat product developed by Jung
et al. (2020) is the only dataset that exhibits some degree of
similarity to ours. To assess the consistency between the two

Diversity and Distributions, 2026
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datasets, we first calculated the proportion of each habitat type
within 1-degree grid cells for both datasets. We then performed
a correlation analysis, comparing each habitat class at both
classification levels in our 2015 habitat product with the corre-
sponding categories in Jung et al. (2020)'s dataset. A higher cor-
relation indicates greater similarity between the two datasets,
whereas a lower correlation suggests discrepancies in habitat
classification.

2.6 | Trend Analysis of Habitats

We quantified long-term changes in habitat availability by
analysing trends in each Level-1 habitat type for the period
2000-2022. For each year, the global Level-1 habitat map was
reclassified to isolate the focal habitat class, and the annual
layers were then aggregated to a common 50x 50km grid so
that each grid cell represents the proportion of area covered by
that habitat type in that year. The resulting annual time series
for each grid cell was used to estimate linear trends in habitat
proportion over time. To evaluate whether the observed trends
were statistically meaningful, we applied a Mann-Kendall test
to each grid-cell time series and retained only trends with
p<0.05. The final trend maps summarise the direction and
magnitude of change for each habitat type and form the basis
for describing global spatiotemporal patterns of habitat dy-
namics in this study.

3 | Results

3.1 | Habitat Classification System of AIV Host
Bird Species

ATV host birds are associated with 12 of the 18 Level-1 habitat
classes (66.7%) and 77 of the 100 Level-2 habitat classes (77%) de-
fined in the IUCN Habitat Classification Scheme (Figure 3 and
Table S3). The terrestrial habitats encompass 8 Level-1 classes in-
cluding forest, savanna, shrubland, grassland, wetlands, desert,
artificial-terrestrial and artificial-aquatic habitats (Figure 3A).
Within these Level-1 classes, there are 56 Level-2 habitat types
(Figure 3B and Table S3). Among these habitats, wetlands sup-
port the highest number of AIV host species, with 198 species,
accounting for 66.0% of all known host species. Artificial terres-
trial habitats and grasslands follow, comprising 41.3% and 38.7%
of host species, respectively. For marine habitats, ATV host birds
predominantly occupy four habitat types including marine ner-
itic, marine oceanic, marine intertidal and marine coastal/su-
pratidal (Figure 3A). Most host birds are concentrated in neritic,
tidal and coastal areas (Figure 3B). Across the full IUCN Habitat
Classification Scheme, 6 Level-1 classes (Inland Rocky Areas;
Caves and Subterranean Habitats; Marine-Deep Ocean Floor;
Introduced Vegetation; Other; Unknown) and 23 Level-2 classes
show no documented use by any confirmed AIV host birds and
are therefore excluded from the mapped habitat framework.

3.2 | Evaluations of the Derived Habitat Maps

The mapped habitat classes showed high classification accu-
racy when evaluated against single-habitat species occurrences.

A pixel was considered correctly classified when at least one
presence record of a species whose sole IUCN-defined habi-
tat matched the pixel's assigned habitat type occurred within
it. The average accuracy of the Level-1 and Level-2 habi-
tat maps was 0.84 (£0.08 SD) and 0.83 (+0.12), respectively
(Figure 4). However, accuracy varied across different habitat
types (Figure 4A). Among Level-1 habitats, forest exhibited
the highest average accuracy (0.90+0.03), whereas shrublands
had the lowest accuracy (0.76 +0.05). The accuracy estimates
for other Level-1 habitat classes were as follows: savanna
(0.87+0.08), grassland (0.84 +0.08), wetlands (0.86 £0.07), des-
ert (0.82+0.06), artificial-terrestrial (0.82+0.07) and artificial-
aquatic (0.83 +£0.09).

In addition to differences among habitat types, accuracy also ex-
hibited interannual variability across the 23years (Figure 4A).
This fluctuation occurs to some extent in most habitat classes
due to annual differences in the underlying land-cover products,
whereas it is most pronounced in water-related habitats such as
wetlands and artificial-aquatic environments. These habitats
experience strong seasonal and interannual fluctuations in hy-
drology, which introduce spectral variability and increase clas-
sification uncertainty, leading to larger year-to-year changes in
accuracy.

Moreover, Level-2 habitat maps consistently showed lower accu-
racy than Level-1 maps (Figure 4B). This reduction is expected
because Level-2 classes represent more fine-grained ecological
distinctions and therefore exhibit higher spectral similarity and
greater potential for misclassification in satellite-based products.

At Level-2 classes, 30 out of the 34 mapped habitat classes could
be validated, as species presence data were available for bird
species with a single habitat preference corresponding to these
habitat types (Figure 4B). Forest-related habitats exhibited con-
sistently high classification accuracy, ranging from 0.76 to 1.00.
In contrast, grassland and desert habitats showed lower accu-
racy, with overall accuracy ranges of 0.75-0.89 and 0.72-0.84,
respectively. Among other habitat categories, artificial habitats
demonstrated relatively high classification accuracy at Level-2,
with accuracy values ranging from 0.84 to 0.90. Our product also
shows good agreement with the 2015 habitat maps developed by
Jung et al. (2020) (Figure S1). These results underscore both the
strengths and limitations of the habitat classification approach.
Certain habitat types benefit from well-defined spectral char-
acteristics, enhancing classification accuracy. However, oth-
ers—particularly those influenced by seasonal or interannual
variability—pose greater classification challenges. Recognising
these variations is essential for refining habitat classification
methodologies and ensuring long-term consistency in habitat

mapping.

3.3 | Spatial Pattern of AIV Host Bird Habitats
in 2022

We successfully generated terrestrial habitat maps for AIV host
bird species, identifying 8 Level-1 and 34 Level-2 habitat classes.
Natural habitats—including forest, savanna, shrubland, grass-
land, wetlands and desert—constituted 77.6% of the total terres-
trial habitat area in 2022, whereas artificial habitats—comprising
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artificial-terrestrial and artificial-aquatic—accounted for 22.4%
(Figure 5). Among natural habitats, forest, desert and grassland
covered the largest areas, representing 28.9%, 18.4% and 11.5% of
the total, respectively. Other natural habitat types each contrib-
uted less than 10%, with wetlands and shrublands both compris-
ing 7.6% and savanna making up 3.5%. For artificial habitats, the
area of artificial-terrestrial is over eight times larger than that of

artificial-aquatic (20.0% vs. 2.4%). The dominant artificial habi-
tat types included artificial arable & pasture lands (14.1 and 2)
and artificial degraded forest & plantations (14.3 and 6). These
habitats were predominantly distributed across the North China
Plain, the Indo-Gangetic Plain, the Central Great Plains of the
United States, Ukraine and the Pampas Steppe of Argentina
(Figure 5).
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3.4 | Spatiotemporal Patterns of AIV Host Bird
Habitats

To characterise the long-term habitat dynamics, we quanti-
fied linear trends in the proportion of each Level-1 habitat type
within 50x 50km grid cells from 2000 to 2022 (Figure 6). The
resulting maps reveal substantial spatial heterogeneity, with
distinct regions of expansion and contraction across habitat
types. Forest habitats show major declines across the Amazon,
Central Africa and Southeast Asia, with increases in parts of
Europe, sub-Saharan Africa and southwestern China. Savanna
habitats decline broadly in sub-Saharan Africa, with localised
gains in central South America. Shrubland habitats increase
widely across northern North America and northern Eurasia
and decline in Australia, Central Asia and the Mediterranean.
Grassland habitats decrease across the North American Great

Plains and eastern China, whereas increases occur in Mongolia
and Central Asia. Wetland habitats show general declines across
northern North America, northern Eurasia and Europe, along-
side scattered increases in tropical and temperate regions. Desert
habitats increase across the Middle East, Central Asia and west-
ern Australia, with limited declines in adjacent managed dry-
lands. Artificial-Terrestrial habitats expand markedly across
South and Southeast Asia, eastern China, and parts of Africa and
South America, with declines concentrated in temperate Europe
and selected regions of Africa and South America. Artificial-
aquatic habitats increase in Northeast Asia and decline across
northern Eurasia and from central to northern North America.
These spatially explicit patterns demonstrate substantial and
heterogeneous reconfiguration of habitats relevant to AIV host
species over the past two decades, highlighting the value of the
annual maps for assessing global habitat change.
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4 | Discussion
4.1 | Potential Applications

The annual global habitat maps of AIV host bird species devel-
oped in this study provide a foundational resource for ecologi-
cal and conservation research. By offering ecologically relevant
and temporally explicit habitat information, these maps could
improve species distribution modelling for AIV host bird spe-
cies and help contextualise regions where opportunities for host
contact or exposure may arise. Importantly, these habitat maps
represent only one component of the broader spillover process.

Their value for spillover-related research emerges when they are
combined with independent information on host abundance,
movement, competence, or epidemiological data, enabling more
comprehensive assessments of the environmental settings asso-
ciated with transmission risk.

Beyond applications in disease ecology, this dataset enables
examinations of how wetland loss, agricultural expansion and
conservation policies shape long-term habitat availability for
ATV host bird species. These insights may aid policymakers in
balancing land-use development, biodiversity conservation and
biosecurity priorities.
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More broadly, by linking remote sensing with ecological and
epidemiological datasets, these habitat maps contribute to a
stronger environmental foundation for One Health research.
The methodology framework is transferable to other host taxa
or pathogen systems, supporting global monitoring efforts and
the development of early warning indicators under changing en-
vironmental conditions.

4.2 | Study Limitations

This study also has several limitations that warrant consider-
ation in future work. First, not all AIV host bird habitats could
be comprehensively mapped. The habitat classification in this
study relies heavily on remote sensing-based land-cover prod-
ucts (CCI-LC) and auxiliary environmental data. This depen-
dence is particularly evident in wetland classifications, such
as 5.4 and 5.7, which are inherently difficult to delineate using
remote sensing-based approaches due to their high temporal
variability and hydrological dynamics (Lumbierres et al. 2017;
Mahdavi et al. 2018). Global-scale remote sensing products often
fail to capture small ponds, ephemeral wetlands, or seasonally
inundated areas, leading to potential underrepresentation of
critical wetland habitats (Klein et al. 2017; Pekel et al. 2016).
Consequently, some avian influenza host birds that rely on spe-
cific habitat preferences may have incompletely characterised
habitat distributions in the dataset. These uncertainties may
further influence downstream applications involving AIV ex-
posure or spillover-related analyses, particularly those sensitive
to fine-scale hydrological conditions such as modelling host
congregation, migration stopover suitability or environmental
virus persistence. Users should exercise caution when applying
wetland-related habitat layers and, where possible, complement
them with higher-resolution or regionally calibrated hydrologi-
cal datasets.

Furthermore, although seasonal information was incorporated
into the species-habitat association framework, the present
study does not provide seasonally explicit habitat maps. This
limitation stems from the dependence of our classification ap-
proach on global land-cover products such as CCILC and GLC_
FCS30D, which are available only as annual composites and do
not offer seasonal or intra-annual land-cover information. As a
result, the habitat maps produced here necessarily reflect an-
nual habitat availability rather than seasonal habitat dynamics.
The seasonal information used during the association process
serves solely to identify ecologically relevant habitat types for
each species and should not be interpreted as representing sea-
sonal species distributions. With continued advancements in
remote sensing technologies and the development of higher-
temporal-resolution land-cover products, future research may
enable the production of seasonally resolved global habitat maps
that would complement the annual layers presented here and
better support analyses requiring season-specific habitat infor-
mation for migratory AIV host species.

Third, the accuracy and resolution of the land-cover products and
auxiliary data sources directly influence the reliability of the de-
rived habitat maps. The CCI-LC dataset, which serves as the pri-
mary land cover input, has an overall classification accuracy of

71.1% (Defourny et al. 2017), whereas the GLC_FCS30D dataset
exhibits a reported accuracy of 80.88% (Zhang et al. 2024). These
uncertainties inherently propagate into the final habitat classi-
fications, particularly for habitat types that share spectral simi-
larities or occur in heterogeneous landscapes. Misclassification
errors in the base land-cover data can introduce spatial inconsis-
tencies in habitat representation, which may affect downstream
ecological analyses and risk assessments.

Finally, validating annual habitat maps at a global scale pres-
ents significant challenges. Our validation approach relies on
eBird presence records, which offer an extensive crowdsourced
dataset for bird observations (Sullivan et al. 2009). However,
species misidentifications, observer biases and heterogeneous
survey efforts introduce unavoidable uncertainties. In addi-
tion, some species may occasionally be recorded in suboptimal
or non-preferred habitats, either due to observation error or
temporary habitat use during migration or periods of resource
scarcity. Although stringent quality control filters were applied,
such sources of noise cannot be fully eliminated. Moreover, be-
cause eBird provides presence-only observations, true absences
cannot be reliably inferred, preventing a formal assessment of
absence accuracy—that is, whether pixels mapped as non-focal
habitats correctly represent areas where a species is truly absent.
Conducting such assessments would require standardised sur-
vey data, which are not available at a global scale. For these rea-
sons, our validation focuses on presence-supported consistency
between mapped habitat classes and species known to specialise
in those habitats.

Despite these limitations, the dataset provides valuable infor-
mation for analysing avian influenza host bird habitat dynam-
ics, supporting disease risk assessments, and informing land
use and conservation policies. Future versions of this work
could further improve habitat classifications by incorporating
higher-resolution remote sensing products, enhanced modelling
frameworks, and additional region-specific validation datasets,
thereby strengthening the accuracy and utility of global habitat
mapping for AIV host species.
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