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ABSTRACT
Introduction and Aim: Long-term changes in wildlife habitats are fundamental for understanding biodiversity change and 
the ecological contexts that may shape opportunities for host contact or exposure. Avian influenza virus (AIV), one of the most 
pressing zoonotic threats, is maintained primarily in wild birds whose habitats are undergoing rapid transformation. Yet no glob-
ally consistent, temporally explicit habitat dataset tailored to AIV host species exists, leaving their long-term habitat dynamics 
poorly documented. To address this gap, we developed the first global annual habitat maps of AIV host birds from 2000 to 2022.
Main Variables Included: We developed a habitat classification framework specific to AIV host birds and produced the global 
annual terrestrial habitat maps by integrating satellite-derived land cover, climate zones, biome information and topography. The 
dataset includes 8 Level-1 and 34 Level-2 habitat types, achieving overall accuracies of 0.84 (± 0.08) and 0.83 (± 0.12), respectively.
Time Coverage: The maps span the years 2000–2022, with annual temporal resolution.
Spatial Coverage: The dataset covers global terrestrial surfaces (excluding Antarctica) at a resolution of 300 m.
Taxa: Wild bird species with confirmed AIV detections, with habitat preferences derived from IUCN species-level associations.
Applications: This dataset provides a foundational environmental layer for improving host species distribution models and for 
examining how environmental change influences habitats used by AIV host birds. It can support downstream ecological and 
epidemiological analyses within a One Health framework and inform conservation planning and land-use management.

1   |   Introduction

Species' habitats have changed rapidly under global change in-
cluding land-use conversion, climate variability and intensify-
ing human activity (Tilman et al. 2017; Williams et al. 2022; 
Zheng et  al.  2021). These transformations disrupt biodiver-
sity patterns and reshape interactions among environments, 

wildlife and humans. For zoonotic host species, such shifts 
can alter geographic distributions and movement patterns, 
thereby shaping opportunities for cross-species pathogen 
transmission (Carlson et  al.  2022; Gibb et  al.  2020). Avian 
influenza virus (AIV) stands out as the most likely zoonotic 
disease to cause the next global pandemic (Uyeki et al. 2017). 
Maintained primarily in wild bird reservoirs (The Global 
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Consortium for H5N8 and Related Influenza Viruses  2016), 
AIV has repeatedly crossed species barriers and infected wild 
birds, poultry, mammals and humans (Agüero et  al.  2023; 
Harvey et al. 2023; Leguia et al. 2023; Ramey et al. 2022; Xie 
et  al.  2023). Because habitat change influences host abun-
dance, occurrence and migratory behaviours, understanding 
the spatiotemporal dynamics of their habitats could provide an 
essential ecological basis for interpreting subsequent shifts in 
species distributions and potential exposure contexts within a 
One Health framework.

Habitat is broadly defined as the physical space that a species 
occupies or could potentially occupy within a specific spatial 
and temporal range, typically delineated by land cover and 
climate conditions (Kearney 2006). The International Union 
for Conservation of Nature (IUCN) Red List of Threatened 
Species classifies all habitat types associated with differ-
ent species into a global habitat classification framework 
(IUCN  2012). Waterbirds, the primary natural host of AIV, 
predominantly inhabit aquatic environments such as wet-
lands, lakes and coastal regions (Gaidet et  al.  2011; Xie 
et al. 2023; Yin et al. 2023). In addition to waterbirds, several 
terrestrial bird species have also been shown to be suscepti-
ble to AIV infection (Boon et al. 2007), suggesting that eco-
logically relevant host environments extend beyond aquatic 
habitats. Despite growing attention to species-environment 
interactions within conservation and disease ecology 
(Ellis 2021; Glidden et al. 2021; Millard et al. 2021; Outhwaite 
et  al.  2022; Plowright et  al.  2017), few studies have estab-
lished a habitat classification framework tailored specifically 
to zoonotic hosts. Existing classification systems, such as the 
IUCN Habitat Classification Scheme, are developed for broad 
conservation goals and are not designed to capture ecological 
contexts relevant to pathogen transmission (IUCN 2012). Up 
to now, a systematic understanding of which habitat types are 
most ecologically relevant for AIV host birds remains lacking.

A further gap concerns the limited understanding of the spa-
tiotemporal dynamics of AIV host bird habitats. Existing hab-
itat mapping approaches have largely followed two pathways. 
The first, known as the Area of Habitat (AOH) (Lumbierres, 
Dahal, Soria, et  al. 2022), refines IUCN range maps by re-
moving unsuitable areas based on land cover and elevation. 
Although effective for narrowing species distributions, it does 
not explicitly delineate habitat nor capture temporal dynam-
ics. The second approach maps habitat types directly based on 
land cover classifications (Jung et al. 2020), but these products 
are typically static, generalised across species, and not tai-
lored to zoonotic hosts. As a result, they fall short in capturing 
temporal habitat transformations and in revealing how chang-
ing landscapes reshape spatial interfaces among wild hosts, 
domestic animals and humans. Furthermore, land cover-to-
habitat translations often rely on predefined class definitions 
rather than empirical observations of species-specific habi-
tat use, potentially misrepresenting the actual relationship 
between land cover and realised habitat. These limitations 
underscore the need for a host-focused habitat framework, 
as AIV host species occupy a distinct subset of habitat types 
compared with the broader avifauna. Existing global habitat 
products, therefore, lack the specificity required to capture 
the ecological settings most relevant to AIV maintenance. 

Crucially, the lack of a globally consistent, temporally explicit 
habitat dataset for AIV host birds limits efforts to characterise 
long-term patterns in their habitat use and the environmental 
contexts relevant to potential host-pathogen interactions.

Here, we present the first annual global habitat maps of AIV 
host bird species from 2000 to 2022. We first develop the habitat 
classification system tailored to AIV host birds by integrating 
species-level habitat preferences from the IUCN Red List with 
confirmed host records from the Global Initiative on Sharing 
All Influenza Data (GISAID) (Shu and McCauley 2017), cap-
turing the full diversity of ecological settings used by host 
species across life stages and seasons. Building on this frame-
work, we then generate global, annually resolved terrestrial 
habitat maps for the period 2000–2000. Validation using eBird 
occurrence records, alongside cross-comparisons with exist-
ing habitat products, demonstrated strong temporal consis-
tency and ecological fidelity across habitat types. This dataset 
fills a critical knowledge gap by providing, for the first time, 
globally consistent and temporally explicit habitat information 
for AIV host bird species. It offers a foundational environmen-
tal layer to improve host species distribution modelling and 
support downstream analyses of how environmental change 
affects host distributions and the ecological settings that may 
influence opportunities for exposure, contributing to broader 
One Health efforts to understand the ecological contexts of 
zoonotic emergence.

2   |   Methods

2.1   |   Overview

This study develops a comprehensive framework for generating 
and analysing annual terrestrial habitat maps of AIV host birds 
(Figure  1). We first establish a two-level habitat classification 
system by combining AIV host species records from the GISAID 
(Shu and McCauley 2017) with the habitat preference informa-
tion from the IUCN classification scheme (IUCN 2012). Based on 
this framework, we produce annual habitat maps (2000–2022) 
by translating satellite-derived land cover datasets into habitat 
classes using a decision tree model. Additional environmen-
tal variables—including climate zones, biome types, elevation 
and alpine and mountain layers—are incorporated to improve 
spatial delineation of habitats. We validate the resulting maps 
through accuracy assessment using species occurrence data and 
by cross-comparing them with existing habitat products.

2.2   |   Datasets

2.2.1   |   List of Host Bird Species

This study focuses on bird species currently known to host in-
fluenza A viruses. Host information for these viruses was ob-
tained from the GISAID, one of the largest platforms for sharing 
influenza-related data worldwide (Shu and McCauley  2017). 
GISAID serves as a key repository of genomic sequences and 
metadata on all influenza viruses and has been extensively uti-
lised in One Health research (Forster et al. 2020; Gangavarapu 
et  al.  2023; McBride et  al.  2023; Mercatelli and Giorgi  2020; 

 14724642, 2026, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ddi.70153 by Q

iang Z
hang - U

niversity C
ollege L

ondon , W
iley O

nline L
ibrary on [11/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3 of 13Diversity and Distributions, 2026

Oude Munnink et al. 2020; Shi et al. 2018). From GISAID, we 
retrieved detailed information on the influenza A virus col-
lected from 1973 to 2023, with a specific focus on the ‘hostname’ 
metadata to identify host species. Following data curation and 
validation, we confirmed a total of 300 bird species as AIV host 
bird species.

2.2.2   |   Habitat Preference of AIV Host Bird Species

Habitat preference data for each species were provided by the 
IUCN Red List, which provides information on the ‘Habitat 
types’, ‘Season’, ‘Suitability’ and ‘Major importance’. The IUCN 
Habitats Classification Scheme accounts for biogeographic 
factors, latitudinal zonation and depth in marine systems, 

categorising habitats into 18 Level-1 and 100 Level-2 classes 
(IUCN  2012). For migratory birds, IUCN also provides infor-
mation on seasonality of habitat use, distinguishing between 
‘Resident’, ‘Breeding’, ‘Non-breeding’, ‘Passage’ and ‘Unknown’ 
categories. ‘Suitability’ reflects the extent to which a habitat 
supports a given species. ‘Suitable’ indicates that the species 
frequently inhabits the habitat; ‘Marginal’ suggests occasional 
presence or low population density. ‘Unknown’ denotes uncer-
tainty regarding habitat suitability. Additionally, ‘Major impor-
tance’ assesses the relevance of each habitat for the species: if a 
habitat is deemed suitable, the ‘Major importance’ field shows 
a ‘Yes’ or ‘No’. ‘Yes’ signifies that the habitat is crucial for the 
species' survival, either due to its essential role at a specific life 
stage (such as breeding or providing food resources) or because 
it serves as the primary habitat where most individuals occur.

FIGURE 1    |    Workflow of the study. GISAID stands for the Global Initiative on Sharing All Influenza Data.
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2.2.3   |   Satellite-Derived Land Cover Data

The primary land cover data used in this study is the 
European Space Agency Climate Change Initiative land cover 
(CCI-LC) product. CCI-LC provides a global dataset consist-
ing of 22 classes at a 300-m resolution, updated annually 
since 1992, and classified according to the United Nations 
Food and Agriculture Organization's (UN FAO) Land Cover 
Classification System (LCCS) (Defourny et  al.  2017). To re-
fine  land cover information, we incorporated GLC_FCS30D, 
which provides greater detail on wetland subcategories such 
as inland wetlands (swamp, marsh, flooded flat and saline) 
and coastal wetlands (mangrove, salt marsh and tidal flat) 
(Zhang et al. 2024). GLC_FCS30D is the first global dataset for 
monitoring land cover dynamics at a 30-m resolution, cover-
ing 35 land cover subcategories and spanning the period from 
1985 to 2022 (Zhang et al. 2024).

2.2.4   |   Translation Table From Land Cover to 
Habitat Class

The translation table linking IUCN habitat class and land cover 
types was obtained from Lumbierres, Dahal, Di Marco, et  al. 
(2022). This dataset was derived from a data-driven model based 
on point locality data for birds. Lumbierres, Dahal, Di Marco, 
et al. (2022) extracted the land-cover class for each point locality 
and aligned them with the corresponding IUCN habitat class, 
employing logistic regression models to quantify habitat-land 
cover associations. The model-generated odds ratios were then 
used to assess the strength of the association between habi-
tat types and land cover. The classification accuracy between 
habitat class and land cover from CCI-LC is 71.1%. To ensure 
high confidence in our habitat classification, we only included 
habitat-land cover associations where the odd ratio ≥ 1.396, as 
increasing the threshold reduced the presence of spurious asso-
ciations (Table S1).

2.2.5   |   Climate and Biome Zoning Data

To characterise the climatic conditions of the habitats, we 
utilised climate zones defined by the Köppen-Geiger climate 
classification system (Beck et al. 2018). This dataset, available 
at 1-km resolution, represents contemporary climate condi-
tions (1980–2016) and was generated from a combination of 
four high-resolution, terrain-corrected climate datasets, of-
fering improved classification accuracy and greater detail 
compared to previous versions. Additionally, we incorporated 
global alpine biome data and realm delineations to refine hab-
itat classifications and generate masks for distinguishing be-
tween subtropical and tropical regions (Dinerstein et al. 2017; 
Testolin et al. 2020).

2.2.6   |   Mountain Maps and Elevation Data

To differentiate lowland and mountain habitat classes, 
we employed the K1 mountain map (Roger et  al.  2018) and 
digital elevation model (DEM) from the NASA Shuttle 
Radar Topography Mission (SRTM) (Jarvis et  al.  2008). The 

K1 mountain map, produced by the World Conservation 
Monitoring Centre, is the first global and objective description 
of mountainous characteristics, classifying mountains into 
six categories based on a combination of elevation and rela-
tive topography. It reveals that 26.4% of the Earth's terrestrial 
surface is mountainous (Roger et al. 2018). The SRTM DEM 
features high spatial resolution and accuracy, with a spatial 
resolution of approximately 90 m at the equator and a vertical 
error of less than 16 m (Jarvis et al. 2008).

2.3   |   Defining the Habitat Classification System 
of AIV Host Bird Species

The IUCN Habitats Classification Scheme comprises 18 Level-1 
and 100 Level-2 habitat classes. However, not all habitat types 
are relevant for AIV host birds. To establish a suitable classifi-
cation system, we integrated habitat preference data from the 
IUCN Red List with the AIV host bird list from GISAID, gen-
erating a host-habitat association framework. For each species, 
we considered habitat preferences across four seasonal periods: 
Resident, Breeding, Non-breeding and Passage. To ensure the 
reliability of habitat classification, we excluded habitats cate-
gorised as ‘Marginal’ or ‘Unknown’ in terms of suitability, as 
well as those where ‘Major importance’ was marked as ‘No’, 
given their higher uncertainty in representing essential hab-
itats. Marginal-use habitats constitute only a small fraction of 
all host-habitat associations and always occur alongside suitable 
habitats (Table  S2). Their exclusion, therefore, has negligible 
influence on the resulting habitat classification system. Based 
on these host-habitat associations, we derived a refined habitat 
classification system specifically for AIV host bird species, en-
suring ecological relevance and applicability for mapping their 
distributions.

2.4   |   Generating Annual Habitat Maps of AIV Host 
Bird Species

We employed a decision tree method (Jung et al. 2020) to in-
tegrate land cover, climate and ecological datasets, enabling a 
systematic classification of each habitat type (Figure 2). The 
mapping process was conducted in two stages. First, we delin-
eated the spatial extents of all Level-1 habitat categories using 
constraints specified in the habitat-land cover translation 
table, along with criteria for physiological and reproductive 
suitability (Table S1). Next, within the defined boundaries of 
each Level-1 habitat, we mapped the distribution of their cor-
responding Level-2 habitat types. To maintain spatial consis-
tency, all input datasets were resampled to a 300-m resolution, 
aligned with the CCI-LC dataset. The hierarchical mapping 
followed a strict, pre-defined sequence based on previous 
studies (Jung et al. 2020). At the Level-1 classification stage, 
artificial habitats were prioritised, subsequently masking des-
erts, which in turn masked forests, and so forth. For Level-2 
classification, a similar hierarchical approach was applied. 
For example, the ‘forest-subtropical/tropical moist montane 
(1.9)’ was mapped first, followed by ‘forest-subtropical/tropi-
cal mangrove vegetation above high tide level (1.7)’. To reduce 
misclassification errors in Level-2 habitat types and improve 
consistency in habitat delineation, certain Level-2 habitat 
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types were aggregated such as artificial arable land (14.1) and 
artificial pastureland (14.2). These adjustments were driven 
by the classification granularity of the land cover dataset and 
the constraints defined in the habitat-land cover translation 
table (Defourny et  al.  2017; Lumbierres, Dahal, Di Marco, 
et al. 2022).

2.5   |   Data Validation

2.5.1   |   Independent Accuracy Assessment Based on 
eBird Observations

To assess the accuracy of each habitat class at both classifica-
tion levels, we first identified bird species with a single habitat 
preference at the Level-1 and Level-2 classifications based on the 
IUCN Red List, totaling 2891 and 1518 species, respectively. We 
then retrieved bird presence records for these selected species 
from eBird, a global citizen science platform that collects bird 
observation data contributed by volunteers worldwide (Sullivan 
et al. 2009). To minimise potential biases of the eBird data from 
survey methodology and effort, we applied strict data quality 
filters, following established protocols from previous studies 
(Johnston et al. 2021; Kelling et al. 2015). These include com-
plete checklists, stationary or travelling protocols, survey dura-
tions under 5 h, travel distances under 3 km, and fewer than 10 
observers per checklist. These filters help reduce variability, en-
suring consistent species detection rates and improving data re-
liability. Finally, a total of 2445 single-habitat species remained 

for validation, contributing 45,499,366 presence records globally 
(Figure S1).

Validation was performed at the pixel level. A pixel was con-
sidered correctly classified when at least one presence record 
of a single-habitat species occurred within it, and the spe-
cies' sole IUCN-defined habitat matched the pixel's assigned 
habitat type. For each species, we calculated the proportion 
of presence points that fell within the corresponding habitat 
class at both classification levels as an accuracy metric, re-
spectively. The accuracy was calculated using the following 
formula:

where nwithinHabitat denotes the number of species occurrence 
points (from eBird) falling within the corresponding mapped 
habitat, and nAll is the total number of species occurrence 
points.

2.5.2   |   Comparison With Habitat Maps Developed by 
Jung et al. (2020)

At the global scale, publicly available species habitat datasets 
remain highly limited. The habitat product developed by Jung 
et  al.  (2020) is the only dataset that exhibits some degree of 
similarity to ours. To assess the consistency between the two 

(1)Accuracy =
nwithinHabitat

nAll

FIGURE 2    |    The sequence of decision trees for generating habitat at Level-2 of the AIV host bird species. Different colours represent the Level-1 
habitat classes. The arrows indicate the mapping order of each Level-2 habitat class, following the approach of Jung et al. (2020). Artificial habitat 
classes (red and pink) are masked out from all other habitat classes.
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datasets, we first calculated the proportion of each habitat type 
within 1-degree grid cells for both datasets. We then performed 
a correlation analysis, comparing each habitat class at both 
classification levels in our 2015 habitat product with the corre-
sponding categories in Jung et al. (2020)'s dataset. A higher cor-
relation indicates greater similarity between the two datasets, 
whereas a lower correlation suggests discrepancies in habitat 
classification.

2.6   |   Trend Analysis of Habitats

We quantified long-term changes in habitat availability by 
analysing trends in each Level-1 habitat type for the period 
2000–2022. For each year, the global Level-1 habitat map was 
reclassified to isolate the focal habitat class, and the annual 
layers were then aggregated to a common 50 × 50 km grid so 
that each grid cell represents the proportion of area covered by 
that habitat type in that year. The resulting annual time series 
for each grid cell was used to estimate linear trends in habitat 
proportion over time. To evaluate whether the observed trends 
were statistically meaningful, we applied a Mann-Kendall test 
to each grid-cell time series and retained only trends with 
p ≤ 0.05. The final trend maps summarise the direction and 
magnitude of change for each habitat type and form the basis 
for describing global spatiotemporal patterns of habitat dy-
namics in this study.

3   |   Results

3.1   |   Habitat Classification System of AIV Host 
Bird Species

AIV host birds are associated with 12 of the 18 Level-1 habitat 
classes (66.7%) and 77 of the 100 Level-2 habitat classes (77%) de-
fined in the IUCN Habitat Classification Scheme (Figure 3 and 
Table S3). The terrestrial habitats encompass 8 Level-1 classes in-
cluding forest, savanna, shrubland, grassland, wetlands, desert, 
artificial-terrestrial and artificial-aquatic habitats (Figure 3A). 
Within these Level-1 classes, there are 56 Level-2 habitat types 
(Figure 3B and Table S3). Among these habitats, wetlands sup-
port the highest number of AIV host species, with 198 species, 
accounting for 66.0% of all known host species. Artificial terres-
trial habitats and grasslands follow, comprising 41.3% and 38.7% 
of host species, respectively. For marine habitats, AIV host birds 
predominantly occupy four habitat types including marine ner-
itic, marine oceanic, marine intertidal and marine coastal/su-
pratidal (Figure 3A). Most host birds are concentrated in neritic, 
tidal and coastal areas (Figure 3B). Across the full IUCN Habitat 
Classification Scheme, 6 Level-1 classes (Inland Rocky Areas; 
Caves and Subterranean Habitats; Marine-Deep Ocean Floor; 
Introduced Vegetation; Other; Unknown) and 23 Level-2 classes 
show no documented use by any confirmed AIV host birds and 
are therefore excluded from the mapped habitat framework.

3.2   |   Evaluations of the Derived Habitat Maps

The mapped habitat classes showed high classification accu-
racy when evaluated against single-habitat species occurrences. 

A pixel was considered correctly classified when at least one 
presence record of a species whose sole IUCN-defined habi-
tat matched the pixel's assigned habitat type occurred within 
it. The average accuracy of the Level-1 and Level-2 habi-
tat maps was 0.84 (± 0.08 SD) and 0.83 (± 0.12), respectively 
(Figure  4). However, accuracy varied across different habitat 
types (Figure  4A). Among Level-1 habitats, forest exhibited 
the highest average accuracy (0.90 ± 0.03), whereas shrublands 
had the lowest accuracy (0.76 ± 0.05). The accuracy estimates 
for other Level-1 habitat classes were as follows: savanna 
(0.87 ± 0.08), grassland (0.84 ± 0.08), wetlands (0.86 ± 0.07), des-
ert (0.82 ± 0.06), artificial-terrestrial (0.82 ± 0.07) and artificial-
aquatic (0.83 ± 0.09).

In addition to differences among habitat types, accuracy also ex-
hibited interannual variability across the 23 years (Figure 4A). 
This fluctuation occurs to some extent in most habitat classes 
due to annual differences in the underlying land-cover products, 
whereas it is most pronounced in water-related habitats such as 
wetlands and artificial-aquatic environments. These habitats 
experience strong seasonal and interannual fluctuations in hy-
drology, which introduce spectral variability and increase clas-
sification uncertainty, leading to larger year-to-year changes in 
accuracy.

Moreover, Level-2 habitat maps consistently showed lower accu-
racy than Level-1 maps (Figure 4B). This reduction is expected 
because Level-2 classes represent more fine-grained ecological 
distinctions and therefore exhibit higher spectral similarity and 
greater potential for misclassification in satellite-based products.

At Level-2 classes, 30 out of the 34 mapped habitat classes could 
be validated, as species presence data were available for bird 
species with a single habitat preference corresponding to these 
habitat types (Figure 4B). Forest-related habitats exhibited con-
sistently high classification accuracy, ranging from 0.76 to 1.00. 
In contrast, grassland and desert habitats showed lower accu-
racy, with overall accuracy ranges of 0.75–0.89 and 0.72–0.84, 
respectively. Among other habitat categories, artificial habitats 
demonstrated relatively high classification accuracy at Level-2, 
with accuracy values ranging from 0.84 to 0.90. Our product also 
shows good agreement with the 2015 habitat maps developed by 
Jung et al. (2020) (Figure S1). These results underscore both the 
strengths and limitations of the habitat classification approach. 
Certain habitat types benefit from well-defined spectral char-
acteristics, enhancing classification accuracy. However, oth-
ers—particularly those influenced by seasonal or interannual 
variability—pose greater classification challenges. Recognising 
these variations is essential for refining habitat classification 
methodologies and ensuring long-term consistency in habitat 
mapping.

3.3   |   Spatial Pattern of AIV Host Bird Habitats 
in 2022

We successfully generated terrestrial habitat maps for AIV host 
bird species, identifying 8 Level-1 and 34 Level-2 habitat classes. 
Natural habitats—including forest, savanna, shrubland, grass-
land, wetlands and desert—constituted 77.6% of the total terres-
trial habitat area in 2022, whereas artificial habitats—comprising 
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artificial-terrestrial and artificial-aquatic—accounted for 22.4% 
(Figure 5). Among natural habitats, forest, desert and grassland 
covered the largest areas, representing 28.9%, 18.4% and 11.5% of 
the total, respectively. Other natural habitat types each contrib-
uted less than 10%, with wetlands and shrublands both compris-
ing 7.6% and savanna making up 3.5%. For artificial habitats, the 
area of artificial-terrestrial is over eight times larger than that of 

artificial-aquatic (20.0% vs. 2.4%). The dominant artificial habi-
tat types included artificial arable & pasture lands (14.1 and 2) 
and artificial degraded forest & plantations (14.3 and 6). These 
habitats were predominantly distributed across the North China 
Plain, the Indo-Gangetic Plain, the Central Great Plains of the 
United States, Ukraine and the Pampas Steppe of Argentina 
(Figure 5).

FIGURE 3    |    Summary of habitat classes for AIV host bird species. (A) The number of AIV host bird species in habitat classes at Level-1. (B) The 
habitat classes at Level-2 of the AIV host bird species. Red names represent Level-1 habitat classes, whereas black names indicate Level-2 habitat 
classes. The colour area is proportional to the number of species in (A). It should be noted that the Level-2 habitat classes with smaller proportions 
are not shown.
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3.4   |   Spatiotemporal Patterns of AIV Host Bird 
Habitats

To characterise the long-term habitat dynamics, we quanti-
fied linear trends in the proportion of each Level-1 habitat type 
within 50 × 50 km grid cells from 2000 to 2022 (Figure 6). The 
resulting maps reveal substantial spatial heterogeneity, with 
distinct regions of expansion and contraction across habitat 
types. Forest habitats show major declines across the Amazon, 
Central Africa and Southeast Asia, with increases in parts of 
Europe, sub-Saharan Africa and southwestern China. Savanna 
habitats decline broadly in sub-Saharan Africa, with localised 
gains in central South America. Shrubland habitats increase 
widely across northern North America and northern Eurasia 
and decline in Australia, Central Asia and the Mediterranean. 
Grassland habitats decrease across the North American Great 

Plains and eastern China, whereas increases occur in Mongolia 
and Central Asia. Wetland habitats show general declines across 
northern North America, northern Eurasia and Europe, along-
side scattered increases in tropical and temperate regions. Desert 
habitats increase across the Middle East, Central Asia and west-
ern Australia, with limited declines in adjacent managed dry-
lands. Artificial-Terrestrial habitats expand markedly across 
South and Southeast Asia, eastern China, and parts of Africa and 
South America, with declines concentrated in temperate Europe 
and selected regions of Africa and South America. Artificial-
aquatic habitats increase in Northeast Asia and decline across 
northern Eurasia and from central to northern North America. 
These spatially explicit patterns demonstrate substantial and 
heterogeneous reconfiguration of habitats relevant to AIV host 
species over the past two decades, highlighting the value of the 
annual maps for assessing global habitat change.

FIGURE 4    |    Accuracy assessment for the Level-1 and Level-2 habitat maps. (A) Accuracy of the Level-1 habitat types across different years. Each 
point represents the mean accuracy of a given habitat type in a specific year, with error bars indicating one standard deviation, calculated based on 
the mean accuracy of all species that exclusively prefer this single habitat type. (B) Accuracy of Level-2 habitat types. Each point in the boxplot rep-
resents the mean accuracy of all species that exclusively prefer the given habitat type in a specific year.
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9 of 13Diversity and Distributions, 2026

FIGURE 5    |    Spatial distribution of AIV host bird habitats in 2022. (A) Spatial distribution of Level-1 habitat classes. The subplots represent the 
proportions of each Level-1 class. (B) Spatial distribution of Level-2 habitat classes. The numbers in the legend represent the codes for each Level-2 
class. For more detailed information, please refer to Table S3.
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4   |   Discussion

4.1   |   Potential Applications

The annual global habitat maps of AIV host bird species devel-
oped in this study provide a foundational resource for ecologi-
cal and conservation research. By offering ecologically relevant 
and temporally explicit habitat information, these maps could 
improve species distribution modelling for AIV host bird spe-
cies and help contextualise regions where opportunities for host 
contact or exposure may arise. Importantly, these habitat maps 
represent only one component of the broader spillover process. 

Their value for spillover-related research emerges when they are 
combined with independent information on host abundance, 
movement, competence, or epidemiological data, enabling more 
comprehensive assessments of the environmental settings asso-
ciated with transmission risk.

Beyond applications in disease ecology, this dataset enables 
examinations of how wetland loss, agricultural expansion and 
conservation policies shape long-term habitat availability for 
AIV host bird species. These insights may aid policymakers in 
balancing land-use development, biodiversity conservation and 
biosecurity priorities.

FIGURE 6    |    Spatial patterns of trends in Level-1 habitats at 50 km × 50 km grid cells for AIV host bird species during 2000–2020. The blue, red 
and grey areas indicate significant increases, significant decreases and no significant changes in the corresponding habitat classes, respectively.
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More broadly, by linking remote sensing with ecological and 
epidemiological datasets, these habitat maps contribute to a 
stronger environmental foundation for One Health research. 
The methodology framework is transferable to other host taxa 
or pathogen systems, supporting global monitoring efforts and 
the development of early warning indicators under changing en-
vironmental conditions.

4.2   |   Study Limitations

This study also has several limitations that warrant consider-
ation in future work. First, not all AIV host bird habitats could 
be comprehensively mapped. The habitat classification in this 
study relies heavily on remote sensing-based land-cover prod-
ucts (CCI-LC) and auxiliary environmental data. This depen-
dence is particularly evident in wetland classifications, such 
as 5.4 and 5.7, which are inherently difficult to delineate using 
remote sensing-based approaches due to their high temporal 
variability and hydrological dynamics (Lumbierres et al. 2017; 
Mahdavi et al. 2018). Global-scale remote sensing products often 
fail to capture small ponds, ephemeral wetlands, or seasonally 
inundated areas, leading to potential underrepresentation of 
critical wetland habitats (Klein et  al.  2017; Pekel et  al.  2016). 
Consequently, some avian influenza host birds that rely on spe-
cific habitat preferences may have incompletely characterised 
habitat distributions in the dataset. These uncertainties may 
further influence downstream applications involving AIV ex-
posure or spillover-related analyses, particularly those sensitive 
to fine-scale hydrological conditions such as modelling host 
congregation, migration stopover suitability or environmental 
virus persistence. Users should exercise caution when applying 
wetland-related habitat layers and, where possible, complement 
them with higher-resolution or regionally calibrated hydrologi-
cal datasets.

Furthermore, although seasonal information was incorporated 
into the species-habitat association framework, the present 
study does not provide seasonally explicit habitat maps. This 
limitation stems from the dependence of our classification ap-
proach on global land-cover products such as CCILC and GLC_
FCS30D, which are available only as annual composites and do 
not offer seasonal or intra-annual land-cover information. As a 
result, the habitat maps produced here necessarily reflect an-
nual habitat availability rather than seasonal habitat dynamics. 
The seasonal information used during the association process 
serves solely to identify ecologically relevant habitat types for 
each species and should not be interpreted as representing sea-
sonal species distributions. With continued advancements in 
remote sensing technologies and the development of higher-
temporal-resolution land-cover products, future research may 
enable the production of seasonally resolved global habitat maps 
that would complement the annual layers presented here and 
better support analyses requiring season-specific habitat infor-
mation for migratory AIV host species.

Third, the accuracy and resolution of the land-cover products and 
auxiliary data sources directly influence the reliability of the de-
rived habitat maps. The CCI-LC dataset, which serves as the pri-
mary land cover input, has an overall classification accuracy of 

71.1% (Defourny et al. 2017), whereas the GLC_FCS30D dataset 
exhibits a reported accuracy of 80.88% (Zhang et al. 2024). These 
uncertainties inherently propagate into the final habitat classi-
fications, particularly for habitat types that share spectral simi-
larities or occur in heterogeneous landscapes. Misclassification 
errors in the base land-cover data can introduce spatial inconsis-
tencies in habitat representation, which may affect downstream 
ecological analyses and risk assessments.

Finally, validating annual habitat maps at a global scale pres-
ents significant challenges. Our validation approach relies on 
eBird presence records, which offer an extensive crowdsourced 
dataset for bird observations (Sullivan et  al.  2009). However, 
species misidentifications, observer biases and heterogeneous 
survey efforts introduce unavoidable uncertainties. In addi-
tion, some species may occasionally be recorded in suboptimal 
or non-preferred habitats, either due to observation error or 
temporary habitat use during migration or periods of resource 
scarcity. Although stringent quality control filters were applied, 
such sources of noise cannot be fully eliminated. Moreover, be-
cause eBird provides presence-only observations, true absences 
cannot be reliably inferred, preventing a formal assessment of 
absence accuracy—that is, whether pixels mapped as non-focal 
habitats correctly represent areas where a species is truly absent. 
Conducting such assessments would require standardised sur-
vey data, which are not available at a global scale. For these rea-
sons, our validation focuses on presence-supported consistency 
between mapped habitat classes and species known to specialise 
in those habitats.

Despite these limitations, the dataset provides valuable infor-
mation for analysing avian influenza host bird habitat dynam-
ics, supporting disease risk assessments, and informing land 
use and conservation policies. Future versions of this work 
could further improve habitat classifications by incorporating 
higher-resolution remote sensing products, enhanced modelling 
frameworks, and additional region-specific validation datasets, 
thereby strengthening the accuracy and utility of global habitat 
mapping for AIV host species.
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